생성형 AI는 기업의 생산성을 높이고 새로운 비즈니스 기회를 창출할 수 있는 잠재력을 가지고 있지만, 모든 기업이 성공적으로 도입하는 것은 아닙니다. 822명의 기업 리더와 이사회 임원을 대상으로 실시한 가트너의 새로운 설문조사 결과, 현재 9%의 기업이 생성형 AI를 활용해 비즈니스 모델을 혁신하고 새로운 비즈니스 기회를 창출하고 있다고 나타났습니다. 하지만 데이터 품질 저하,
Author
'생성형 AI’와 ‘전통적 AI’, 결합하면 시너지 업!
ChatGPT에 대한 궁금증: 생성 AI와 자연어처리 기술의 근원 탐구
최근 ChatGPT에 대한 관심이 대단합니다. 2022년 12월 공개된 지 5일만에 사용자100만 명을 기록했고, 지난 2023년 2월 기준, 월 사용자 1억 명이 넘는 서비스가 되었습니다. 마치 2016년 이세돌을 이긴 알파고 출현 당시와 같이 세간의 관심이 쏟아지고 있습니다. 사람들이 이렇게 열광하는 이유는 ChatGPT가 생성하는 답변이나 글의 수준이 사람이 생성하는 것 이상으로 훌륭하기
AI 시스템 구축을 위한 Text Analytics 활용, 과연 어디까지?
증가하는 AI 시스템 구축 최근 AI 시스템 구축에 관한 기사들을 많이 볼 수 있습니다. 국민은행의 AI 보이스피싱 모니터링 시스템, 심평원의 인공지능(AI)을 이용한 과잉 진료 단속 시스템, 우리은행의 무역 기반 자금세탁방지(Anti-TBML) 시스템, 대우건설의 AI 기반 입찰 데이터 분석 시스템, 그리고 갤러리아 백화점의 AI 기반 백화점 맞춤서비스 등 매우 다양합니다. 이러한 AI
하이브리드 머신러닝으로 텍스트 분석의 한계를 넘다
모든 비즈니스 영역으로 확대되는 텍스트 분석 그동안 소셜 미디어 분석에 국한되었던 텍스트 분석은 이제, 콜센터, 마케팅, 품질 영역으로 확장은 물론 최근 들어 전통적인 수작업 영역(발주처 요구사항 분석, AI기반 안전사고 예방 등)까지 확대하고 있습니다. 텍스트 분석을 하기 위해서는 텍스트와 함께, AI 기반의 NLP 머신러닝 엔진이 필수입니다. 이 엔진 내에서 문맥 기반의