Streaming to better data quality

Streaming technologies have been around for years, but as Felix Liao recently blogged, the numbers and types of use cases that can take advantage of these technologies have now increased exponentially. I've blogged about why streaming is the most effective way to handle the volume, variety and velocity of big data. That's […]

Post a Comment

The yin and yang of better data and analytics

What are the most useful skills a data quality leader can possess? As an editor of an online data quality magazine, I naturally get asked this type of question regularly at events and meetups. My answer may surprise some who are expecting a data-centric response. I firmly believe that sales and […]

Post a Comment

How Santa uses data quality to wrap up Christmas

"Two weeks to go," Santa said to himself, with millions of toys stacked up on the shelves. Each year worry hit at the same time – "How do I get the right toy to the right child without losing my mind?" Though Old St. Nick didn't have a computer science degree, deep down […]

Post a Comment

Creating analytics? Don't forget a supplier SLA policy.

During a data quality assessment, one of my clients discovered that a large chunk of data that ultimately fed into their business analytics engine was sourced externally. After examining the contracts surrounding this data, I found that 100% of it failed to possess service-level agreements (SLAs) for the quality of […]

Post a Comment

Managing data where it lives

Historically, before data was managed it was moved to a central location. For a long time that central location was the staging area for an enterprise data warehouse (EDW). While EDWs and their staging areas are still in use – especially for structured, transactional and internally generated data – big […]

Post a Comment

How SAS supports the four pillars of a data quality initiative

Data quality initiatives challenge organizations because the discipline encompasses so many issues, approaches and tools. Across the board, there are four main activity areas – or pillars – that underlie any successful data quality initiative. Let’s look at what each pillar means, then consider the benefits SAS Data Management brings […]

Post a Comment

The growing importance of big data quality

Our world is now so awash in data that many organizations have an embarrassment of riches when it comes to available data to support operational, tactical and strategic activities of the enterprise. Such a data-rich environment is highly susceptible to poor-quality data. This is especially true when swimming in data lakes – […]

Post a Comment

The “tarnished record” – Alternatives to gold for fraud analytics

We often talk about full customer data visibility and the need for a “golden record” that provides a 360-degree view of the customer to enhance our customer-facing processes. The rationale is that by accumulating all the data about a customer (or, for that matter, any entity of interest) from multiple sources, you […]

Post a Comment

Why analytical models are better with better data

Most enterprises employ multiple analytical models in their business intelligence applications and decision-making processes. These analytical models include descriptive analytics that help the organization understand what has happened and what is happening now, predictive analytics that determine the probability of what will happen next, and prescriptive analytics that focus on […]

Post a Comment

Operational data governance: Policy vs. procedure for data validation

In my prior posts about operational data governance, I've suggested the need to embed data validation as an integral component of any data integration application. In my last post, we looked at an example of using a data quality audit report to ensure fidelity of the data integration processes for […]

Post a Comment