Advanced Analytics

Move beyond spreadsheets to data mining, forecasting, optimization – and more

Advanced Analytics | Machine Learning
Rick Wicklin 0
The Kullback–Leibler divergence between continuous probability distributions

In a previous article, I discussed the definition of the Kullback-Leibler (K-L) divergence between two discrete probability distributions. For completeness, this article shows how to compute the Kullback-Leibler divergence between two continuous distributions. When f and g are discrete distributions, the K-L divergence is the sum of f(x)*log(f(x)/g(x)) over all

Advanced Analytics | Machine Learning
Rick Wicklin 0
The Kullback–Leibler divergence between discrete probability distributions

If you have been learning about machine learning or mathematical statistics, you might have heard about the Kullback–Leibler divergence. The Kullback–Leibler divergence is a measure of dissimilarity between two probability distributions. It measures how much one distribution differs from a reference distribution. This article explains the Kullback–Leibler divergence and shows

1 2 3 23

Back to Top