Tag: Statistical Programming

Rick Wicklin 6
Pre-allocate arrays to improve efficiency

Recently Charlie Huang showed how to use the SAS/IML language to compute an exponentially weighted moving average of some financial data. In the commentary to his analysis, he said: I found that if a matrix or a vector is declared with specified size before the computation step, the program’s efficiency

Rick Wicklin 0
Enumerating levels of a classification variable

A colleague asked, "How can I enumerate the levels of a categorical classification variable in SAS/IML software?" The variable was a character variable with n observations, but he wanted the following: A "look-up table" that contains the k (unique) levels of the variable. A vector with n elements that contains

Rick Wicklin 0
Inadequate finishes

Andrew Ratcliffe posted a fine article titled "Inadequate Mends" in which he extols the benefits of including the name of a macro on the %MEND statement. That is, if you create a macro function named foo, he recommends that you include the name in two places: %macro foo(x); /** define

Rick Wicklin 13
Finding data that satisfy a criterion

A fundamental operation in data analysis is finding data that satisfy some criterion. How many people are older than 85? What are the phone numbers of the voters who are registered Democrats? These questions are examples of locating data with certain properties or characteristics. The SAS DATA step has a

Rick Wicklin 7
Funnel plots: An alternative to ranking

In a previous blog post, I showed how you can use simulation to construct confidence intervals for ranks. This idea (from a paper by E. Marshall and D. Spiegelhalter), enables you to display a graph that compares the performance of several institutions, where "institutions" can mean schools, companies, airlines, or

Rick Wicklin 4
A statistical model of card shuffling

I recently returned from a five-day conference in Las Vegas. On the way there, I finally had time to read a classic statistical paper: Bayer and Diaconis (1992) describes how many shuffles are needed to randomize a deck of cards. Their famous result that it takes seven shuffles to randomize

Rick Wicklin 3
How to sample from independent normal distributions

In my article on computing confidence intervals for rankings, I had to generate p random vectors that each contained N random numbers. Each vector was generated from normal distribution with different parameters. This post compares two different ways to generate p vectors that are sampled from independent normal distributions. Sampling

1 37 38 39 40 41 44