Tag: Statistical Programming

Rick Wicklin 3
Evaluate polynomials efficiently by using Horner's scheme

Polynomials are used often in data analysis. Low-order polynomials are used in regression to model the relationship between variables. Polynomials are used in numerical analysis for numerical integration and Taylor series approximations. It is therefore important to be able to evaluate polynomials in an efficient manner. My favorite evaluation technique

Rick Wicklin 7
Storing and loading modules

You can extend the capability of the SAS/IML language by writing modules. A module is a user-defined function. You can define a module by using the START and FINISH statements. Many people, including myself, define modules at the top of the SAS/IML program in which they are used. You can

Rick Wicklin 6
The most likely birthday in the US

Do you know someone who has a birthday in mid-September? Odds are that you do: the middle of September is when most US babies are born, according to data obtained from the National Center for Health Statistics (NCHS) Web site (see Table 1-16). There's an easy way to remember this

Programming Tips
Rick Wicklin 110
Loops in SAS

Looping is essential to statistical programming. Whether you need to iterate over parameters in an algorithm or indices in an array, a loop is often one of the first programming constructs that a beginning programmer learns. Today is the first anniversary of this blog, which is named The DO Loop,

Rick Wicklin 1
Multithreaded = more productive

NOTE: SAS stopped shipping the SAS/IML Studio interface in 2018. It is no longer supported, so this article is no longer relevant. When I write SAS/IML programs, I usually do my development in the SAS/IML Studio environment. Why? There are many reasons, but the one that I will discuss today

1 35 36 37 38 39 44