
Top 10 SAS best
programming practices
Charu Shankar

SAS Education

SCSUG, Dallas Forth Worth

November 7, 2011

What can you expect to learn in this session

2

• Data Worker Rule #1

• Top 3 questions you need answered before you start your

data work

• The only answer to your “What’s the best way to do this”?

• Reduce CPU time

• Reduce I/O

• Reduce Memory

• Reduce Space

And last but not least

• Reduce your programing time

What 6 Resources Are Used?

programmer

time

network

bandwidth

CPU

I/O

memory

data storage

space

resources used

4

Understanding Efficiency Trade-offs

Space

Data Data

12

6

39

CPU Time

12

6

39

often

im
p
lies

5

Understanding Efficiency Trade-offs

I/O

Memory Usage

often
im
plies

Where Is I/O Measured? (Review)

6

I/O
measured

here

Output
SAS
Data

Input
SAS
Data

I/O
measured

here

Buffers

Buffers

PDV
ID Gender Country Name

memory* Caches

* Windows and UNIX Only

I/O is measured when Input data is

copied into the buffers in memory-also

when output data is copied from the

buffers to the output data set

What’s the only answer to
“What’s the best way to do this?”

7

It Depends!!

8

Best Practices for CPU savings

#1. Boiling down or reducing your data

#2. Doing conditional processing

#3. Do not reduce the length of numeric variables.

9

#1 Boiling down your data

Where we take a look at the placement of statements

in the Datastep

10

The Result- Let’s compare techniques

Technique CPU I/O Memory

I. Subsetting IF at Bottom 2.3 1226.0 265.0

II. Subsetting IF near Top 1.3 1226.0 265.0

Percent Difference 42.8 0.0 0.0

CPU I/O Memory

11

#2 Use conditional Logic

IF-THEN/ELSE

SELECT

Executes a SAS statement for

observations that meet a specific

condition

Executes one of several statements

or groups of statements

12

The result-Let’s compare Techniques
Technique CPU I/O Memory

I. ALL IF Statements 15.9 6797.0 280.0

II. ELSE-IF Statements 9.7 6797.0 288.0

III. SELECT/WHEN Block 3.0 6795.0 263.0

The I/O for each technique is the same.

13

#3 Do not reduce the length of numeric data

Characteristics of Numeric Variables
Numeric variables have the following characteristics:

� are stored as floating-point numbers in real-binary

representation

– store multiple digits per byte

– use a minimum of one byte to store the sign and

exponent of the value (depending on the operating

environment) and use the remaining bytes to store

the mantissa of the value

� take 8 bytes of storage per variable, by default,

but can be reduced in size

� always have a length of 8 bytes in the PDV

14

Default Length of Numeric Variables
The number 35,298 can be written as follows:

15

SAS stores numeric variables in floating-point form:

+0.35298*(10**5)

Sign Mantissa Base Exponent

Exponent Sign Mantissa

Possible Storage Lengths for Integer Values
Windows and UNIX

16

Length
(bytes)

Largest Integer
Represented Exactly

3 8,192

4 2,097,152

5 536,870,912

6 137,438,953,472

7 35,184,372,088,832

8 9,007,199,254,740,992

Possible Storage Lengths for Integer Values
z/OS

17

Length
(bytes)

Largest Integer
Represented Exactly

2 256

3 65,536

4 16,777,216

5 4,294,967,296

6 1,099,511,627,776

7 281,474,946,710,656

8 72,057,594,037,927,936

Assigning the Length of Numeric Variables
The use of a numeric length less than 8 bytes does the

following:

� causes the number to be truncated to the specified

length when the value is written to the SAS data set

� causes the number to be expanded to 8 bytes

in the PDV when the data set is read by padding

the mantissa with binary zeros

18

This reduces the number of bytes available for the

mantissa, which reduces the precision of the number that

can be accurately stored.

���� Numbers are always 8 bytes in length in the PDV.

Dangers of Reduced-Length Numeric Variables
It is not recommended that you reduce the length of

integer numeric variables inappropriately or that you

reduce the length of variables that hold large integer

numeric values. This example illustrates the effect of

inappropriately reducing integer values.

19

data test;

length X 3;

X=8193;

run;

data _null_;

set test;

put X=;

run;

p202d07

Saving I/O

20

#4 Reduce multiple & unnecessary passes through data.
Create multiple output datasets from one pass of the
input data, rather than processing the input data each
time that you create an output data set.-use the data
step over PROC SQL
Creating sorted subsets with the SORT procedure.

#5 Modify variable attributes.

21

Var Name Var Format

Ceorder_info Prod_id $7.

Total_sales .

Ceesales_analysis Product_id $7.

Total_sales Comma9.2.

#5 Manage your data with PROC DATASETS

Business task- Rename & format variable attributes in

choc.cesales_analysis to be consistent with those in other

datasets

22

DATA Step / PROC DATASETS

data choc.ceorder_info;

set choc.ceorder_info;

rename prod_id=product_id;

format total_cases comma9.2;

run;

proc datasets library=choc;

modify ceorder_info

rename prod_id=product_id;

format total_cases comma9.2;

run;

23

DATA Step / PROC DATASETS

So Which one is better for data management?
The Data Step or PROC Datasets?

Did you know ? PROC Datasets needs a
QUIT statement otherwise it just sits in
memory waiting for you to submit
another request.. So remember to end it
with a QUIT statement

24

If you process fewer variables and observations,

CPU and/or I/O operations can be affected significantly.

Techniques affecting CPU and/or IO

25 ...

6 Process only necessary variables &
observations

#6 Process only necessary variables

Simple techniques can conserve I/O. The amount of I/O

saved depends on the size of the subset being

processed.

6.1 Reduce the number of observations - WHERE in the

In the Data step or WHERE in the PROC step

6.2. WHERE statement or IF statement

26

27

Consider- Which one is more efficient?

The Data Step & then subsetting in PROC MEANS
or
subsetting directly in the Datastep

Did you know ? The data step is a builder
– that’s why you had to use the data step
here because you were creating a new
variable. Otherwise PROC MEANS alone
would have been enough!

6.2 Reduce Observations

Where or IF – that is the question?

28

Subsetting IF or the Where clause?

29

Create a subset of the cesales_analysis dataset that contains

data for Chocolate.

3 data chocolate;

4 set choc.cesales_analysis;

5 if category='Chocolate' ;

6 Run;

NOTE: There were 115928

observations read from the

data set

CHOC.CESALES_ANALYSIS.

NOTE: The data set

WORK.CHOCOLATE has 50368

observations and 11

variables.

NOTE: DATA statement used

(Total process time):

real time 2.84 seconds

cpu time 0.12 seconds

7 data chocolate;

8 set choc.cesales_analysis;

9 where category='Chocolate' ;

10 Run;

NOTE: There were 50368

observations read from the data

set CHOC.CESALES_ANALYSIS.

WHERE category='Chocolate';

NOTE: The data set

WORK.CHOCOLATE has 50368

observations and 11 variables.

NOTE: DATA statement used

(Total process time):

real time 2.26 seconds

cpu time 0.06 seconds

30

The Subsetting IF and the WHERE Statements

ID Flight Route Dest

Buffers

PDV

BuffersI/O

measured

here

Output
Data
Set

Input
SAS
Data WHERE statement

selects observations.

memory

I/O

measured

here

Subsetting IF

selects observations.

31

Consider- When to use which one?

The WHERE clause
Or
The Subsetting IF
The answer lies in this question - do you want to
subset existing obs or newly created obs?

Did you know ? The WHERE clause is
the same one used in SQL. If you want to
subset existing obs use the WHERE. The
powerful WHERE acts on obs before
moving it to the PDV. The IF statement
works on newly created var but has to
read in row by row into the PDV thus
slower in comparison

32

#7 Process only the necessary variables
To subset variables, you can use the following:

� DROP and KEEP statements

� DROP= and KEEP= data set options

DROP KEEP

Customer_NameMonth Year

PDV
Job_
Title

Salary Manager
_ID

YrEnd
Bonus

Using the KEEP=/DROP= Options

33

Buffers

Buffers
I/O

measured
here

Output
Data
Set

Input
SAS
Data

memory

I/O
measured

here KEEP=/DROP= data set option

on the input data set

KEEP=/DROP= data set option

on the output data set

(KEEP/DROP statement in the DATA step)

D D

34

Comparing Techniques

Technique CPU I/O Memory

I. KEEP not used 2.9 7177 8140

II. KEEP on DATA statement 2.3 656 8138

III. KEEP on SET statement 2.4 1625 8138

IV. KEEP on SET and DATA statements 2.2 662 8138

V. KEEP on SET and PROC statements 2.4 1625 8139

V.

CPU

35

Comparing Techniques

V.

I/O

V.V.

Memory

36

Using the KEEP=/DROP= Options

ID Flight Route Dest

Buffers

PDV

BuffersI/O

measured

here

Output
Data
Set

Input
SAS
Data

memory

I/O

measured

here
KEEP=/DROP=
data set option

in the SET statement

D

KEEP=/DROP= data set option
in the DATA statement

(KEEP/DROP statement)

D

Best practice - Saving Space

37

#8 Store data as character to manage space
What type should my data be—Character or numeric?

38

Saving memory

I always have trouble remembering three things:

faces, names, and -- I can't remember what the third

thing is.

Fred A. Allen

39

#10. Programmer’s time saving
10.1 Getting intimate with the SAS display manager

The log-

Shortcuts-keys, comments

Using macros to understand your recent log

10.2 Getting to know your data-Enter the PROCS

Dictionary Tables

Which proc gives you duplicates with a special option &_No its not
PROC SORT

Which proc lets you look at the highest value

10.3 Variable shortcuts

10.4 Stealing code from SAS

10.5 When does a function work better than an Operator

10.6 What options keep me from accidentally overwriting source data

Tips & tricks to manage the SAS display manager

40

Last Word
What is the data worker’s rule #1?

What are 3 questions to ask before jumping to data work

Top 10 SAS best programming practices:

#1. Boiling down or reducing your data

#2. Do conditional processing

#3. Do not reduce the length of numeric variables

#4 Reduce multiple passes of your data

#5 Manage your data with PROC Datasets

#6 Process only necessary observations

#7 Process only necessary variables

#8 Store data as character type to save space

#9 Use the BY statement instead of CLASS to save space

#10 Finally its all about YOU & your time-many tips

41

Thanks for your time
Questions

Contact

Charu Shankar

Technical Training Specialist

SAS Institute, Toronto

Charu.shankar@sas.com

42

