Data scientists: We’re not all like Mr Spock…


There is lot of talk at the moment about data analysts or data scientists, but what do you need to be successful in these roles and what type of person do you need to be? The stereotypical view is that we’re ‘a bit nerdy’ and ‘walk around in white coats’, but while that may be true of some, it’s certainly not the norm.

You need a strong foundation in maths, and that’s what I most enjoyed at school. But like most other kids, I also wanted to be a footballer or a rock star. And while any data analyst needs to be numerate and understand data, the best analysts I’ve worked with are those that are the most creative. By this I mean having a different way of looking at a problem, which then gives you ideas on how best to solve it. You have to be sure, at the outset, that the problems you’re solving are the right ones.

There are usually so many problems you could solve, but the key is solving the problems that yield the most value to the business. If you take supermarket chain Tesco, their loyalty card delivered by Dunnhumby is built on SAS analytics. You give vouchers relevant to the customer so they then use the vouchers again and again. If it means you reduce customer churn by 5 per cent, you can multiply the average shop per week by the number of new customers, multiply that by the number of weeks in a year and give the customer something in millions of pounds which equates to the additional annual revenue. Giving an answer in pure business terms like that is what executives will value most. They will be less interested in the maths that got you there.

In terms of qualifications, we’re not all pure mathematicians either. My team comprises people qualified in applied statistics, econometrics and even social sciences. The key is they are all turned on by data, what you can do with data and how you can solve problems. But do not expect business people to be turned on by data. We need to present findings back to them in a format that is right for the person we are speaking to. If it’s the CMO of a Telco, don’t give them tables and tables of data. Use visual analytics to display the findings in pictures or easy-to-follow graphs.

The other way we can get our message across is through simple story-telling. There’s the example of the father who rings up a retailer and complains they’ve been sending his 16-year-old daughter vouchers for baby products. He later has to call back and apologise as it turns out his daughter is in fact pregnant but he didn’t know. This shows the power of analytics – they understood from her profile, her browsing behaviour and all the other data available that she must be pregnant, even though her own father was not aware she was.

Another example is a retailer we’d worked with that had done their forecasting by gut feel for many years. We then used a forecasting engine and effectively turned it on without telling them. We were able to show them how wrong they were. They changed overnight from being very much against the solution to being a big supporter of it.

However, it’s important to tread carefully. A barrier can be the fact it’s a bit personal if you’re challenging someone’s experience, sometimes gained over many years in that particular sector. The solution is very often a mixture of this business experience (and asking the right questions) combined with an analytical approach.

As for whether most of us are a bit like Mr Spock, well that perhaps used to be the case. I think that’s changed as we’re much more used to data, and many current executives spent even their formative years with data all around them. Many MBA courses now have some element of data or data analysis involved. Then there’s current graduates born in the early 1990s and therefore born with the Internet. I think we’ve seen analytics emerge from the backroom into the boardroom.

Learn more about the human side of big data and high-performance analytics in this research report about data scientists by Tom Davenport.


About Author

Dr. Laurie Miles

Director, Global Cloud Analytics

Laurie Miles is a Global Director of Cloud Analytics, providing analytical advice and thought leadership globally across all industry verticals. He brings over 25 years of real-world analytics experience to the role. After joining SAS in 1996, Laurie was a consultant delivering analysis focussed projects to organisations from a variety of industry sectors including financial services, telecommunications, retail and utilities. He became SAS UK’s Head of Retail Banking Technology in 2000. Laurie was later appointed Head of Analytics for SAS UK & Ireland in 2008, working with some of the UK’s largest organisations providing strategic advice and forming industry best practice. In this role Laurie also pioneered the development of the SAS Analytics-as-a-Service solution, “SAS Results”. In January 2015 was appointed to lead this globally as part of the SAS Cloud Analytics proposition. Laurie holds a BSc in Econometrics, an MSc in Game Theory and a PhD in Number Theory.

Comments are closed.

Back to Top