(RE)USING DUAL INFORMATION IN MILP

INFORMS 2014, San Francisco

Philipp M. Christophel Menal Güzelsoy Imre Pólik

AGENDA

- 1 LP Duality
- Reusing Dual Information
- Computational Results

LP DUALITY | WEAK-STRONG DUALITY

Consider the following LP problem

$$z = \min \ cx$$
 s.t. $L \le Ax \le U$
$$\ell \le x \le u$$

 Assume z is finite. Any dual solution y satisfies (all terms are finite):

$$z \ge \sum_{i:y_i>0} L_i y_i + \sum_{i:y_i<0} U_i y_i + \sum_{i:c_i - A_i^T y>0} \ell_i (c_i - A_i^T y) + \sum_{i:c_i - A_i^T y<0} u_i (c_i - A_i^T y)$$

$$= z_y(L, U, \ell, u)$$

 There exists an optimal dual solution y* that satisfies $z=z_u^*(L, U, \ell, u)$

LP DUALITY FARKAS LEMMA

• The following system is infeasible:

$$L \le Ax \le U$$
$$\ell \le x \le u$$

• There is a dual ray r to prove it:

$$z_r(L, U, \ell, u) = \sum_{i:r_i > 0} L_i r_i + \sum_{i:r_i < 0} U_i r_i + \sum_{i:-A_i^T r > 0} \ell_i (-A_i^T r) + \sum_{i:-A_i^T r < 0} u_i (-A_i^T r) > 0$$

LP DUALITY

DUAL INFORMATION IN BRANCH AND BOUND

Node is primal feasible/dual simplex hits objective limit:

- A dual solution y is revealed
- Globally valid and can be used elsewhere in tree
- Store dual solutions and use them later as needed
 - Prune nodes by bound
 - ► Fix/Tighten bounds
 - ▶ Variable selection

LP DUALITY

DUAL INFORMATION IN BRANCH AND BOUND

Node is infeasible:

- ullet A dual ray r is revealed
- Store dual rays and use them later as needed
 - Prune nodes by infeasibility
 - Fix/Tighten bounds
 - Branch towards infeasibility
- Great for feasibility instances
- No upper bound/incumbent needed for dual ray tightening
- vs Conflict analysis:
 - Cheap to implement/use
 - Source of information is kept, no need to extract conflict clauses
 - ► Dynamic and adaptive

Using dual solution y:

- y is globally valid and gives a lower bound (weak duality) at any other node
- ullet Compute dual objective value $z_y(L,\,U,\ell,\,u)=$

$$\sum_{i:y_i>0} L_i y_i + \sum_{i:y_i<0} U_i y_i + \sum_{i:c_i-A_i^T y>0} \ell_i (c_i - A_i^T y) + \sum_{i:c_i-A_i^T y<0} u_i (c_i - A_i^T y)$$

- Let \overline{z} be upper bound/incumbent objective value
- Prune node if $z_y(L,\,U,\ell,\,u) \geq \bar{z}$

NODE PRUNING

Using dual ray r:

- r can be used to detect infeasible nodes
- Compute ray objective value $z_r(L,\,U,\ell,\,u)=$

$$\sum_{i:r_i>0} L_i r_i + \sum_{i:r_i<0} U_i r_i + \sum_{i:-A_i^T r>0} \ell_i (-A_i^T r) + \sum_{i:-A_i^T r<0} u_i (-A_i^T r)$$

- Prune node if $z_r(L, U, \ell, u) > 0$
- What if $z_y < \bar{z}$ and $z_r \le 0$?

COLUMN BOUND TIGHTENING

• Using dual solution y: Reduced cost fixing $z_y(L,\,U,\ell,\,u) =$

$$\sum_{i:y_i>0} L_i y_i + \sum_{i:y_i<0} U_i y_i + \sum_{i:c_i-A_i^T y>0} \ell_i (c_i - A_i^T y) + \sum_{i:c_i-A_i^T y<0} u_i (c_i - A_i^T y)$$

- If $c_i A_i^T y > 0$, then increasing ℓ_i also increases z_y
- If there is $\ell_i < \ell'_i < u_i$ such that

$$z_y(L, U, \ell, u) + (\ell'_i - \ell_i)(c_i - A_i^T y) \ge \bar{z},$$

then we can tighten u_i to ℓ'_i where

$$\ell_i' = \ell_i + \frac{\bar{z} - z(L, U, \ell, u)}{c_i - A_i^T y}$$

knowing that there are no better feasible solutions where $x_i > \ell_i'$

COLUMN BOUND TIGHTENING

• Using dual ray r: Dual ray fixing $z_r(L, U, \ell, u) =$

$$\sum_{i:r_i>0} L_i r_i + \sum_{i:r_i<0} U_i r_i + \sum_{i:-A_i^T r>0} \ell_i (-A_i^T r) + \sum_{i:-A_i^T r<0} u_i (-A_i^T r)$$

- If $-A_i^T r > 0$, then increasing ℓ_i also increases z_r
- If there is $\ell_i < \ell'_i < u_i$ such that

$$z_r(L, U, \ell, u) + (\ell'_i - \ell_i)(-A_i^T r) > 0,$$

then we can tighten u_i to ℓ'_i where

$$\ell'_{i} = \ell_{i} + \frac{-z_{r}(L, U, \ell, u)}{-A_{i}^{T} r}$$

knowing that there are no feasible solutions where $x_i > \ell_i'$

• Note that we don't need an upper bound

ROW BOUND TIGHTENING

- Same as reduced cost fixing/dual ray fixing applied to row bounds
- For $y_i > 0$, U_i to L'_i where

$$L'_{i} = L_{i} + \frac{\bar{z} - z_{y}(L, U, \ell, u)}{y_{i}}$$

• For $r_i > 0$, U_i to L'_i where

$$L_i' = L_i + \frac{-z_r(L, U, \ell, u)}{r_i}$$

VARIABLE SELECTION

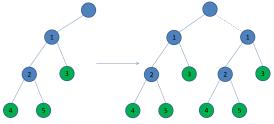
- ullet Estimate child node objective values using dual solution y
- Assume we branch on x_i that takes a fractional value in current node LP: $x_i = f$
- Let Z_L ($[\ell_i, \lfloor f \rfloor]$) and Z_R ($[\lceil f \rvert, u_i \rbrack)$ be the LP objective values of left and right child nodes
- If $c_i A_i^T y < 0$: $Z_L \ge \sigma_L^i = z_y(L, U, \ell, u) + (\lfloor f \rfloor - u_i)(c_i - A_i^T y)$
- If $c_i A_i^T y > 0$: $Z_R \ge \sigma_R^i = z_y(L, U, \ell, u) + (\lceil f \rceil - \ell_i)(c_i - A_i^T y)$
- \bullet Choose the variable that maximizes σ^i_L or σ^i_R

VARIABLE SELECTION

- \bullet Estimate how close the child nodes are to be infeasible using dual ray r
- If $-A_i^T r < 0$: $\delta_L^i = z_r(L, U, \ell, u) + (\lfloor f \rfloor u_i)(-A_i^T r)$
- If $-A_i^T r > 0$: $\delta_R^i = z_r(L, U, \ell, u) + (\lceil f \rceil - \ell_i)(-A_i^T r)$
- \bullet Choose the variable that maximizes δ^i_L or δ^i_R

SUBTREES - IP BOUND

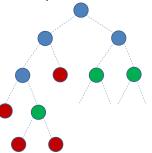
ullet Branch on x_i . Left child $[\ell_i, \lfloor f \rfloor]$, right child $[\lceil f \rceil, u_i]$



- Dual solutions: y^1, \ldots, y^5
- LP bound: $Z_R \ge \max_j \{ z_{y^j}(L, U, \ell, u) + (\lceil f \rceil \ell_i)(c_i A_i^T y^j) \}$
- IP bound:
 - ▶ z_j : the dual objective value of node j with variable bounds of x_i replaced with $[[f], u_i]$
 - $P_R \ge \max\{z_1, \min\{z_3, \max\{z_2, \min\{z_4, z_5\}\}\}\}$

DUAL BRANCHING

Simulate branching with a pool of dual solutions and dual rays



- Select branching variable using dual information
- Evaluate child nodes
 - Prune if proven infeasible by a dual ray
 - ▶ Prune by bound by a dual solution
- Otherwise, select a child node and branch

- 500 test instances (internal + public)
- 1h time limit
- ullet Variable selection: 15% speedup + 15 instances
- Node pruning + bound tightening: 7% speedup + 8 instances

http://support.sas.com/or (Re)using dual information in MILP

