A playbook for analyzing real world intelligence in a health care setting

200314219Real world data collected in a functioning health care setting instead of a controlled clinical environment can provide opportunities for new and deeper insights across life science and health care organizations. However, managing, analyzing and extracting actionable information from the varied available sources can present unique challenges.

The sheer size of these observational and administrative sets of data alone can cause issues. Other factors include the variety of sources, data quality issues and the need to consider temporal relationships between the longitudinal data elements. Both human and computing platforms limit the available resources in many companies.  Clearly, a lack of internal resources limits the number of studies that can be performed.  To alleviate this issue, organizations can use an outsourcing model for research and analysis. However, this approach limits the ability to explore and analyze data freely. Beyond resource constraints, an appropriate computing environment can improve efficiency improvements for process standardization.

A number of regulatory issues also affect the collection and use of real world data. Of utmost importance is patient privacy.  However, unique patient identifiers are critical for the most accurate analysis of treatments in the real world. Over time, the regulations on the collection, use, sharing and sale of real world data will continue to evolve. With these changes, life will become easier for researchers while others will introduce additional hurdles.

Read More »

Post a Comment

Big data customer analytics key to high-performing energy companies

Energy suppliers are fighting for prime position in the domestic energy supply market. Disillusioned customers, increased competition due to a flood of new entrants and tighter regulations are forcing suppliers to reassess their business models. According to UK regulator Ofgem, there were 3.8 million account switches in the first six months of the year. Today, the battleground is price. Tomorrow, it will be how energy suppliers can engage with younger consumers expecting a more personalized service. It’s not just a case of knowing their likes and dislikes, but predicting their future needs and preferences.

Engaging the data generation

energyWhat’s certain is that it’s going to be difficult to “wow” the next generation of energy users. These digital natives are highly selective about who they share their personal information with. Recent research we carried out with the Future Foundation into Gen Y (those aged 16-34 in the UK) shows that nearly half don’t feel comfortable sharing their data with energy suppliers. Only 18 percent trust their provider to find them the best deal available. Despite this weariness, the findings show that this emerging generation recognize that insights from the data they share can be used to enhance their lives and wider society.

And the energy sector is sitting on a data goldmine. Experts say the sector is set to experience substantial growth in the adoption of big data and internet of things (IoT) as the industry opts for intelligent assets, smart meters and appliances that drive business efficiency. Indeed, big data and the IoT will deliver a £15.6 billion boost to the UK energy sector over the next five years, according to research carried out by the Centre for Economics and Business Research. At present, 67 percent of energy companies surveyed have adopted big data analytics. By 2020, this number is expected to rise to 80 percent. This data explosion provides opportunities for electric, gas and water suppliers. Already, companies are embracing technologies such as data analytics, which will unearth customer insights and help suppliers drive a more personalized service. Read More »

Post a Comment

Two tips for women starting a career in analytics

womangraduateWhile men still outnumber women in the analytics field, there are plenty of opportunities available for women.

At a recent Chief Data and Analytics forum, I was encouraged to see a well-balanced number of senior executives presenting about the business of analytics.  Speakers included 12 women and 14 men, which indicates a growing diversity in analytics leadership.  Even 20 years ago when I was studying statistics and computer science, I recall an obviously male dominated field. When I entered to the workforce, it was no different.  Initially, I didn't consider the gender imbalance an issue, but over time I did notice a decline in young women entering the STEM disciplines and entering the workforce.

Women in analytics then and now

In more recent times, companies are striving for gender diversity.  We're seeing more and more programs designed for women in data, such as workgroups, conferences and online communities to increase women into the field of data and analytics.  Why wouldn’t you want to get on board this movement as is it considered the sexiest job of the 21st century?  And since there is a shortage of skills in this space, the right skillset and approach can almost guarantee employment.

Read More »

Post a Comment

Retailers, are you considering customer relevance and commercial relevance?

With today’s customers able to access rich sources of product and service information – especially pricing data – when they are mobile, retailers are being forced to innovate in the way they capture consumers’ attention. Unfortunately, attention spans are rapidly decreasing to just the few seconds that a user spends on any one page before swiping or switching.

In the past, for many retailers it has been a race to the bottom on price or discounting in order to win and get the increasingly savvy shopper to convert and purchase with them.retail-shopper-online

Some retailers are finding ways to lock in customers without the product price being the only issue – recently illustrated by Amazon Prime’s extension of benefits and expansion into the grocery sector.

I was shocked at the number of Internet shopping-savvy friends that have told me a trick they discovered to get a discount on their likely purchases. They simply place items in the basket, give the retailer some basic details like email, and sit back and wait for the email or message with a discount code before completing their purchases. They even follow the process with multiple retailers to see who gives the best discount!

Meanwhile there is growing hype about how retailers need to develop more personalised shopping experiences, and deliver that direct one-to-one interaction with customers, no matter how they shop or browse.

Read More »

Post a Comment

The problem with analytics

At SAS, we use terms like “machine learning,” “predictive modeling” and, of course, “analytics” quite a bit in our day-to-day business. Not surprising, given that we're the largest analytical software vendor out there. But have you noticed that these terms are popping up more frequently in news articles and blogs?

I have. Maybe because that’s the kind of stuff I end up reading, but I’m not so sure. I feel like these terms are popping up more and more; not only that, but when these terms are mentioned, it’s quite often in passing, or in a matter-of-fact way.

538946315I like this. I like the fact that people talk about analytics now, and not only that, they're talking about sophisticated analytics. That’s great. Really great. It’s talked about in a way that makes it sounds easy and achievable. Which it is. At SAS, we've done a lot to advance the use of analytics and to make the development of analytical assets easier and easier. We've even made the deployment of those assets as easy as possible.

But, and you knew this was coming, there's a problem. It’s still not easy to get the kind of analytics that the trade magazines and we at SAS talk about into a production process. Yes, we as a software company have done pretty much everything we can do to make it easy, but there's still a problem.

It’s you. Read More »

Post a Comment

Big data allows us to rethink data strategy

blog 1 pic 2

Sometimes, a data swamp is exactly what you need.

Start with the end in mind -- wise words that apply to everything, and in the world of big data it means we have to change the way we look at managing the data we have.

There was a time when we managed data quality, and the main goal was to meet a metric that said data should be x% accurate. I’d argue that this is no longer relevant. Now, before I’m hunted down by all the data analysts out there, I’d like to clarify that I’m referring to managing data for data’s sake. Often we manage the value out of the data right when we need it most.

Does this mean I’m advocating that we cease performing any data quality work in the data stores holding that information? The answer is yes and no. That’s helpful isn’t it?

The answer became nebulous about the time new capabilities were created with the new big data architectures. Let me explain what I mean. Read More »

Post a Comment

Presidential election quiz

With the first debate between the two candidates behind us and the culmination of the US presidential election drawing near, who wouldn’t love to predict the winner? I don't have a crystal ball, but I do have the power of unstructured text analytics at my fingertips.

With the help of some good public data in the form of primary debate transcripts from the American Presidency Project and your input, I can tell you whether you’re likely to vote democratic or republican. Put my analytical powers to the test -- select your "hot button" issues from the two columns below:

Column A Column B
Focus on fighting ISIS Focus on ISIS in the context of wars in Iraq, Syria
Second Amendment/Bill of Rights provisions for guns  State legislation for gun safety/control
Illegal immigration, controlling borders Immigration reform, path to citizenship
Negative sentiment towards trade deals Wall Street and big banks regulation
Balancing the federal budget Affordable health care and insurance
Tax cuts Taxes to pay for public colleges

Read More »

Post a Comment

Our world is flat, but our employees aren’t: How to manage and hire with analytics

“Every morning in Africa, a gazelle wakes up. It knows it must run faster than the fastest lion, or it will be killed. Every morning a lion wakes up. It knows it must outrun the slowest gazelle, or it will starve to death. It doesn't matter whether you are a lion or a gazelle. When the sun comes up, you better start running.”
-- Thomas L. Friedman, The World Is Flat: A Brief History of the Twenty-first Century

Why a flat world? Because in every industry at every level, the middle man is being cut out and consumers are going directly to the source. The formal term for it is disintermediation – and we’re seeing it everywhere: Twitter and Facebook disintermediate the news industry;  Uber and Airbnb the travel industry; Chinese e-commerce giant Alibaba the retail industry. Disintermediation is the the foundation of the sharing economy.

But how does this radical external transformation translate to internal transformation for your company? What does the ideal organization look like in a flat world?

The companies prospering in the future might be the ones that take advantage of decentralized, self-organized, globally distributed communities working together to produce value.

As the world flattens, we see organizations also flattening, challenging the intermediate levels. But they’re struggling to redefine the manager’s role. The org chart, while easy to understand, doesn’t represent how things get done or how innovation and value are created.

A better option is a network diagram. Managers can use network analytics to recognize, promote and efficiently distribute collaborative projects. Adjusting supply and demand at the level of their top collaborators will increase the success of the whole team. Read More »

Post a Comment

More data journalists – not data scientists

Recently, I was talking to a director of analytics from a large telecommunications company, and I asked her, “Do you think we have a skills shortage?” She replied, “NO, I think we’re just looking in the wrong place.” I wanted to hear more as this analytics expert may have just solved one of the biggest problems of 21st century: the shortage of analytics skills.


A good data journalist can solve a complex data problem and tell a compelling story of the value to the business.

She went on to explain that there’s a large pool of data scientists who can develop great models, extract intelligent insights, and solve complex business problems with analytics - but most lack the skill of telling a good story. Her theory and recent practice is to hire media people and out-of-work journalists to get better results with analytics. I remained intrigued, as she explained further:

A journalist is an investigator who gets a thrill from extracting information, but also has the skill to turn the facts into a compelling and digestible story. Likewise, a good data journalist is a person who gets a thrill from solving a complex data problem combined with telling a compelling story of the value to the business. Can these same skills be important to an analytically driven organisation? Seems so.

Read More »

Post a Comment

Four key data monetisation opportunities

What if you could predict with near-perfect accuracy what you’re going to sell and when your customer is going to buy?  Right supply, right time is the goal German manufacturers have set themselves, without reducing the configuration options customers expect.DM4 pic_lr

Having almost completed stage 1 of their plan – changing processes and ways of working off the back of internally monetising their data – they’re now looking externally to close the gap.

So where are these opportunities to monetise data?  They can be broken down into internal and external activities.

I’m often asked why we consider internal activities as data monetisation, rather than simply better business management.  There are several important reasons why we need to look at internal data monetisation efforts. For example, government agencies don’t have the ability to sell their data, however, the value of combining different agency data sets is evident for understanding fraud, terror activities, tax evasion and student-loan default.

Read More »

Post a Comment